If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+20t=0
a = 6; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·6·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*6}=\frac{-40}{12} =-3+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*6}=\frac{0}{12} =0 $
| 28/62=4/x | | 3f^2+10f-13=0 | | x/1.5=30 | | 17f^2-35f+2=0 | | 10n^2+49n-5=0 | | 9×2^x-1=2×3^x | | 24n^2-2n-1=0 | | 0.75(20-p)+0.5p=13 | | 54=y+8 | | 2=6+c | | 2p^2-28p+98=0 | | -5=3x-14x= | | 3v^2+46v+15=0 | | f11= 4 | | 8.5=17/2+b | | 6j^2+76j-26=0 | | 4n^2-12n-7=0 | | X=20.00-0.08x | | 5d^2-45d+100=0 | | 6(2x6)=-7(-2x+4) | | 12y=696 | | 14r=294 | | 25y=275 | | 367=-4x+60 | | 8p=512 | | 12b=936 | | 4(b-5)=15.6 | | 3x+42=119 | | 24z=216 | | .3x=x-25 | | n−335=315 | | 6t^2+20t+14=0 |